Numerical Simulation of Mixing Enhancement in a Hot Supersonic Jet

نویسنده

  • C. E. Grosch
چکیده

Experimental observations show that the presence of small tabs on the edge of a hot, compressible jet exiting into a slower moving, colder ambient ow can increase the rate of spreading of the jet. This suggests that the rate of mixing of the jet and the ambient uid is also increased. In order to elucidate the physical mechanism responsible for the increased spreading rate a set of calculations were carried out within the framework of the compressible three dimensional Navier-Stokes equations. A series of grid re nements were made to assess the accuracy of the results. We rst simulated the ow without the tabs, obtaining reasonable agreement with experimental measurements of the velocity. We then simulated the ow, without tabs, over a range of values of the convective Mach number in order to determine the dependence of the mixing on this parameter. Simulations with modeled tabs were also carried out. In these calculations the e ect of the tabs on the ow was modeled by pairs of counter rotating vortices. The results of these calculations indeed show that the presence of the tabs increase the spreading rate of the jet. The basic physical mechanism responsible for the enhanced spreading rate is discussed and qualitative comparisons with ow visualizations are made. The rst, third and fourth authors were supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-19480 while in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research, Hampton, VA 23681-0001.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Study on Mixing of Transverse Injection in Supersonic Combustor

A numerical study on mixing of hydrogen injected transversely into a supersonic air stream has been performed by solving Two-Dimensional full Navier-Stokes equations. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. The main objectives of this...

متن کامل

CFD Analysis of Supersonic Coaxial Jets on Effect of Compressible Spreading Rates

Prevailing high-speed air-breathing propulsion systems invariably banks on coaxial jets which plays a vigorous role in stabilization of flames and combustion emission. Coaxial jets have applications in supersonic ejectors, noise control techniques and enhancement of mixing. Coaxial jet nozzles regulate spreading rates by developing virtuous mean flow and shortening primary flow potential core l...

متن کامل

Numerical Simulation of Combustion Chamber without Cavity at Mach 3 . 12

In this Simulation, supersonic combustion of hydrogen at Mach 3.12 has been presented. The combustor has a single fuel injection perpendicular to the main flow from the base. Finite rate chemistry model with K-ε model have been used for modeling of supersonic combustion. The pressure rise due to the combustion is not very high on account of global equivalence ratio being quite low. Within the i...

متن کامل

Numerical Analysis of Opposed Rows of Coolant Jets Injected into a Heated Crossflow

The mixing characteristics of coolant air jets with the hot gas exiting the gas turbine combustor’s primary zone is of major importance to the combustor exit temperature profile. In the present work, a three dimensional numerical simulation on the basis of the finite volume method was developed. The aim was to investigate the penetration and mixing characteristics of directly opposed rows of co...

متن کامل

Direct Numerical Simulation of a Sonic Round Jet in a Turbulent Supersonic Cross Flow

A direct numerical simulation of a round under-expanded sonic jet in turbulent supersonic cross flow has been carried out. The objective is to investigate the mixing mechanism which occurs downstream the jet by use of a passive scalar variable. The Navier-Stokes equations in the cylindrical geometry are solved by use of multiblock overlapping meshes. The method has been validated with a laminar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996